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A B S T R A C T

The present study, using high-frequency hourly data from 2009 to 2023, investigates the impacts of weather 
conditions, carbon prices, COVID-19 pandemic, and the Russia–Ukraine war on electricity demand in the UK. 
Using a semi-parametric estimation technique – generalised additive models – we find that temperature, carbon 
prices, and snowfall have a significant non-linear impact on electricity usage. Temperature and electricity de
mand exhibit a non-linear, U-shaped pattern, with electricity demand decreasing during mild weather and 
sharply rising during extremely hot or cold weather. Carbon prices moderate the temperature effect on electricity 
demand, with higher prices reducing this effect. Snowfall and rain increase electricity demand due to additional 
heating needs. Our analyses also suggest that global events such as the COVID-19 pandemic and the Russia- 
Ukraine war have strongly affected the trajectory of electricity demand, reflecting broader economic disrup
tions driven by global and geopolitical events. The results remain consistent after controlling for electricity 
prices. These findings highlight the importance of adaptive energy policies, including flexible carbon pricing 
strategies, to effectively manage electricity demand during extreme weather events and geopolitical crises.

1. Introduction

This paper examines the non-linear impact of temperature on hourly 
electricity demand, along with other weather-related variables (pre
cipitation, windspeed, and snowfall) in the UK. While doing so, we also 
assess the effectiveness of carbon pricing as a policy tool for electricity 
demand management. Furthermore, the study investigates how global 
events, specifically the COVID-19 pandemic and the Russia-Ukraine 
war, have affected electricity demand in the UK. Using high-frequency 
hourly data (from 2009 to 2023) and employing the generalised addi
tive model (GAM) framework, this study intends to provide new insights 
into how policy instruments and external shocks interact with climate 
variables and influence electricity demand in the UK.

Climate change presents a major global challenge, having a profound 
impact on various sectors of the economy (Acevedo et al. (2020); Fel
bermayr et al. (2022) and Dell et al. (2014)), notably, the energy sector, 
which accounts for approximately 35 percent of global greenhouse gas 

(GHG) emissions (International Energy Agency, 2023). These GHG 
emissions contribute to climate change, producing heterogeneous and 
non-linear effects through weather shocks on the overall economy and 
on energy demand across different geographical locations (Dell et al. 
(2014)).1

Projections suggest that global temperature will rise by 4 ◦C by the 
end of the century, thus necessitating substantial emissions cuts to limit 
this temperature rise to 2 ◦C (Acevedo et al. (2020)). A rise in temper
ature of 4 ◦C would cumulatively cost the global economy 50.1 percent 
of global GDP (Kikstra et al. (2021); UCL (2021)), which is significantly 
higher than the total costs associated with constraining the increase to 2 
◦C.

The electricity sector plays a vital role, as climate change leads to 
temperature variations, directly affecting electricity demand/con
sumption (Staffell and Pfenninger (2018); Mideksa and Kallbekken 
(2010)). Hence, understanding the effects of temperature and carbon 
prices (a policy instrument for emission management) on electricity 
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consumption is necessary for a robust long-term electricity policy. 
Electricity demand and associated weather effects vary across hours or 
periods of a day, between weekdays vs. weekends and across months 
and seasons. Existing studies mainly rely on daily or monthly data. 
Consequently, weather-electricity demand relationships across hours of 
the day are primarily unexplored. In addition, the COVID-19 pandemic 
has affected electricity consumption (Torriti (2020)) and the economy 
(Uddin et al. (2021)).

The ongoing Russia-Ukraine war, through its effect on the global 
energy (fossil fuels) chain and international energy security, has 
increased uncertainty and electricity prices globally (Balsalobre-Lorente 
et al. (2023); Kumar and Mallick (2023)) and has also affected the UK 
electricity market (IEA (2022)).

As far as we know, no research has captured the effect of temperature 
on electricity demand, moderated by the carbon price, while examining 
the impact of the COVID-19 pandemic and the Russia-Ukraine war on 
the temperature – carbon price – aggregate demand relationship.

With the above background, this paper seeks to fill critical gaps in the 
literature by offering a comprehensive analysis of how weather vari
ables, carbon pricing, and global disruptions interact to shape hourly 
electricity demand in the UK. While prior research has examined 
temperature-demand relationships, few studies incorporate high- 
frequency data to capture intraday demand dynamics. However, the 
interaction between climate policy instruments, such as carbon pricing, 
and weather extremes remains underexplored. Existing literature has 
also largely overlooked the influence of global events like the COVID-19 
pandemic and the Russia-Ukraine war on electricity consumption pat
terns. By integrating these dimensions using a semi-parametric Gener
alised Additive Model (GAM) framework, this study provides novel 
insights into how electricity demand responds to complex environ
mental and economic shocks.

Our empirical results suggest a U-shaped relationship between 
temperature and electricity demand. Carbon prices mitigate the effect of 
temperature on electricity demand: the higher the carbon price, the 
lower the impact of temperature on electricity demand. Thus, the find
ings emphasise the importance of adapting carbon pricing as a policy 
strategy to respond to climate change through demand management in 
the UK energy market.

While it is expected that carbon pricing impacts electricity demand 
via its effect on electricity prices, carbon pricing can also exert a direct 
influence on electricity demand. Carbon pricing acts as a policy signal 
that influences investments in energy efficiency, consumption behav
iour, and operational decisions for both firms and households. As a 
result, carbon pricing can potentially influence electricity demand pat
terns directly through regulatory, informational, and anticipatory 
channels, in addition to influencing demand via price adjustments 
(Gerarden et al., 2017; Borenstein, 2012). Recognising both direct and 
indirect channels is critical for assessing the overall efficacy of carbon 
pricing as a demand management instrument (IEA, 2021; World Bank, 
2021).

This paper contains four sections. Section 1 is the Introduction. 
Section 2 reviews the existing literature on the weather-electricity de
mand relationship in the UK. The review identifies that it is an under- 
researched area. Furthermore, there are no empirical studies that 
employ hourly data, and no study examines the impact of carbon pric
ing, COVID-19 and the Russia-Ukraine war on aggregate electricity de
mand in the UK. Section 3 presents empirical analyses, which are 
divided into two subsections: the first one provides a detailed analysis of 
the descriptive statistics, while the second subsection reports and ana
lyses the results of the modelling of electricity demand in the UK. The 
final section draws conclusions and outlines policy implications.

2. Review of literature

Greenhouse gas (GHG) emissions have led to global climate change, 
resulting in (a) rising average temperatures, (b) changes in precipitation 

and seasonal patterns, (c) changes in the intensity and pattern of 
extreme weather events, and (d) a rise in the sea level (Staffell and 
Pfenninger (2018); Mideksa and Kallbekken (2010)). These changes 
have impacted the energy sector, particularly electricity, by making 
supply and demand increasingly dependent on variations in weather 
conditions.

Existing studies suggest the presence of a non-linear U-shaped rela
tionship between electricity demand and temperature, with both low 
and high temperatures creating higher electricity demand for heating 
and cooling, respectively (see Harish et al. (2020); Gupta (2012); Kang 
and Reiner (2022); Chang et al. (2016); Silva et al. (2020); Yao (2021)). 
As a result, electricity demand in the UK increases by 820 MW for every 
degree drop in temperature below 15 ◦C because of the increased de
mand for heating (drax (2016)). On the other hand, the demand for 
electricity in the UK rises by 350 MW for each degree increase above the 
upper threshold of 20 ◦C, driven by the higher demand for cooling 
(Heynes (2022)). These upper and lower thresholds of temperature are 
similar to those in other countries (Yao (2021)). Electricity consumption 
in countries with polar climates increases (decreases) in the winter 
(summer), while the opposite is true for countries with tropical weather.

Normal (cold) weather generally increases electricity supply and 
thus reduces prices since during normal weather, (a) cooling towers are 
more efficient, (b) power cables are more conductive, and (c) less energy 
is needed to prevent equipment from overheating (Government Office 
for Science (GOS) (2023); Cronin et al. (2018)). On the contrary, 
extreme weather, such as scorching heat and cold waves, can disrupt the 
electricity supply and its efficiency. Wind droughts, mainly caused by 
both extreme heat and extreme cold weather, reduce electricity supply 
while increasing electricity demand. Extreme weather also damages the 
interconnectors used to balance the demand to the UK grid, as when 
cables for bringing electricity from abroad can be impaired by coastal 
storms. Similarly, overheating and flooding adversely affect renewable 
energy infrastructure in the UK. The production and operation of re
newables are also negatively affected by extreme weather conditions, for 
instance, scorching heat waves can overheat solar panels and, thus, 
reduce their supply capacity. With extreme weather, managing the 
health and safety of workers, as well as the safety and stability of the 
networks, is more challenging. In short, extreme weather events cause 
grid vulnerability, with a deficit in some areas and a surplus in other 
areas of Europe and the UK (GOS (2023)).

Climate patterns also affect the electricity supply from renewables, 
such that solar generation is abundant with the long sunny days2 in 
summer and scarce during cold and rainy winters (Carabott and Beard, 
2024; Cronin et al., 2018). Solar panels operate optimally at 25 ◦C, with 
efficiency being lowered by around 0.5 % for every degree above or 
below that figure (Heynes (2022)). In July 2022, the solar sector in the 
UK provided its highest share of electricity, with around 8.6 % of elec
tricity demand, which was a jump from the previous 4 % average solar 
contribution. Both clouds and air quality impact solar panels’ perfor
mance. Solar cells operate best in the 400–800 nm wavelength range 
(GOS (2023)). The performance of thermal power plants strongly de
pends on ambient air temperature (AAT): temperature negatively affects 
efficiency and production.

Climate and weather affect the supply and demand for electricity 
and, thus, its price. Weather can cause abrupt price fluctuations in the 
short term and cyclical fluctuations over the medium term (Carabott and 
Beard, 2024), with such fluctuations and the relationships between 
electricity prices and temperature varying between polar and tropical 
regions. In polar climates with cold weather dominating, a fall in tem
perature from a lower threshold can cause a corresponding rise in 

2 This causes the well-known duck curve problem (Schmalensee, 2022; John, 
2017), a major challenge for the solar energy sector, when excess supply during 
(afternoon) hours with low levels of household consumption demand is con
trasted with low supply levels in evening hours with high levels of demand.

C. Kaur et al.                                                                                                                                                                                                                                    Journal of Environmental Management 394 (2025) 126937 

2 



demand and prices. For example, in the UK, every one-degree fall in 
temperature from 10 ◦C increases heating demand, raising prices by 
£1.10 per megawatt-hour (drax (2016)). On the other hand, a positive 
relationship exists between price and temperature in a tropical region or 
in a country dominated by hot and humid weather, since a rise in 
temperature pushes the demand for cooling in these countries.

There are a number of country case studies on the impact of tem
perature on electricity demand. Mideksa and Kallbekken (2010) identify 
significant research gaps in the effects of extreme weather events on 
demand. Harish et al. (2020) find a non-linear impact of temperature on 
electricity consumption, with a heterogeneous impact across states in 
India. Gupta (2012) finds a U-shaped demand function for temperatures. 
The author asserts that the adverse effects of climate change on elec
tricity demand are asymmetric across seasons, with excess demand 
during hot months. Kang and Reiner (2022) find that temperature has 
robust and symmetric or flat effects on electricity demand across all 
periods, while the impact of rain and sunshine varies across hours of the 
day.

Data limitations constrain a detailed examination of the relationship 
between temperature and electricity consumption. Yao (2021) over
comes such traditional data constraints by using satellite-recorded night 
light and temperature data for Europe and Africa. This methodology 
allows for a nuanced understanding of electricity consumption patterns 
across different global regions, emphasising the varying effects of tem
perature changes in urban vs. rural and industrial vs. non-industrial 
areas. Using grid-level data, the author uncovers a non-linear U-sha
ped heterogeneous or asymmetric relationship between outside tem
perature and electricity consumption when the temperature is above 0 
◦C, while an ambiguous relation exists when it is below 0 ◦C. Electricity 
consumption reaches its minimum level for temperatures between 10 ◦C 
and 20 ◦C. The author also finds a critical point at 14.6 ◦C where the 
direction of the temperature-electricity demand relationship changes: it 
shows a negative relationship when the temperature is below 14.6 ◦C 
and a positive relationship above 14.6 ◦C. The author argues that the 
U-shaped relationship around this critical temperature most likely re
flects the relative strength of cooling and heating on demand. Yao 
(2021) also shows that the U-shaped relationship and the critical tem
perature point differ across regions and across degrees of urban devel
opment, highlighting the heterogeneous impact of climate change on 
electricity demand.

Utilising daily Spanish data from August 1995 to August 2003, 
Moral-Carcedo and Vicéns-Otero (2005) find a U-shaped relationship 
between temperature and electricity demand. In another study, Pardo 
et al. (2002) employ daily Spanish data from January 1983 to April 1999 
and find a significant non-linear relationship between temperature and 
electricity demand. The findings of these studies consider both heating 
and cooling needs as well as seasonal patterns in demand forecasting.

The studies mainly examine the impact of weather or climate 
changes on electricity consumption. However, weather also affects the 
real economy, which in turn a domino effect on electricity demand. The 
following studies assess the economic impact of weather changes. Fel
bermayr et al. (2022) use a new dataset that links weather data to annual 
average night-light emissions as a proxy for global economic activity 
from 1992 to 2012. The study focuses on the economic impact of 
extreme weather events, such as storms, excessive precipitation, and 
cold spells. Using spatial econometric panel techniques, the authors find 
that extreme weather reduces the growth of economic activity at the 
local level, with such adverse effects tending to be short-lived and 
transformed into positive growth spillovers in neighbouring areas.

Acevedo et al. (2020) use within-country and across-country 
year-to-year fluctuations in temperature and precipitation for more 
than 180 economies during 1950–2015. The study finds that temper
ature negatively affects output, with high temperatures adversely 
affecting investment, labour productivity, human health, and agricul
tural and industrial output. These adverse effects are heterogeneous 
across low, middle and high-income countries, with hot, low-income 

countries experiencing the highest costs compared to warm, 
high-income countries.

Using data from eight developing countries in South and Southeast 
Asia from 1990 to 2015, Sharif et al. (2020) examine the effects of 
renewable energy and other macroeconomic variables on the ecological 
footprint - the impact of human activities on the Earth’s ecology. The 
authors find that the increased use of renewable energy has significantly 
reduced the environmental footprint in these regions.

Dagar et al. (2024) assess the dynamic interplay between financial 
integration, political stability, infrastructure, and global integration in 
enhancing energy security and energy equity in 50 economies from 2006 
to 2018. They find that increased financial integration and political 
stability enhance energy supply chains and energy security. Conversely, 
rapid urban growth and inadequate social integration pose challenges to 
achieving energy equity. Eskander and Fankhauser (2023) find that 
climate legislation in 111 countries from 1996 to 2018 has reduced 
trade-related international carbon emissions. Jiang et al. (2021)
examine the impacts of the COVID-19 pandemic on the energy sector in 
China and underscore it’s substantial effect on energy demand and 
consumption. The study also highlights the heterogeneity of the region’s 
energy recovery. Additionally, Balsalobre-Lorente et al. (2023) highlight 
the influence of the Russia-Ukraine conflict on the global energy markets 
and electricity consumption patterns, particularly through price vola
tility and supply chain disruptions.

The above literature review clearly reveals that the weather-related 
electricity demand in the UK is an under-researched area. Furthermore, 
the existing studies mainly rely on daily or monthly data. Consequently, 
weather-electricity demand relationships across hours of the day remain 
largely unexplored. While existing literature extensively covers the 
weather-electricity demand nexus, few studies have examined the 
interaction between economic instruments, such as carbon pricing, and 
climate variability. This gap is critical because carbon pricing can 
significantly alter demand patterns during extreme weather, a point that 
has major implications for energy policy.

The COVID-19 pandemic further reshaped electricity demand pat
terns globally and in the UK. Torriti (2022) highlights how changes in 
residential consumption have influenced electricity demand. Uddin 
et al. (2021) document heightened energy market volatility resulting 
from pandemic-driven economic disruptions. Similarly, Kumar and 
Mallick (2023) discuss how the Russia-Ukraine war has influenced 
global electricity demand through disruptions in fossil fuel supply and 
increased energy prices.

To the best of our knowledge, no empirical study for the UK has 
assessed the impact of COVID-19 and the Russia-Ukraine war on 
aggregate electricity demand. This paper seeks to fill this gap.

3. Data and methods

3.1. Data

The study is based on hourly data spanning from January 02, 2009 to 
December 21, 2023,3 with electricity demand as the response variable.4

The key predictor variables are temperature, carbon prices, precipita
tion, windspeed and snowfall. The descriptions of variables and their 
sources are explained in Appendix (see Table A1).

3.2. Modelling non-linear relationships in electricity demand with GAMs

Climate and economic variables have non-linear effects on electricity 

3 Selection of the data period is primarily based on the availability of 
consistent data for each variable.

4 The electricity demand data are available half-hourly, while weather data 
are only available on an hourly basis. Thus, for consistency electricity data were 
aggregated to an hourly frequency.
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demand (Gupta (2012); Harish et al. (2020) and Yao (2021)). General
ised additive models (GAMs) capture such non-linear relationships 
without specifying a particular parametric form (Wood (2017)). Un
derstanding these non-linear relationships are crucial for informing 
adaptive energy pricing strategies, particularly because of frequent oc
currences of extreme weather events and geopolitical shocks. Thus, we 
adapt GAMs in our analyses to model non-linear relationships between 
electricity demand and weather variables, which can be written as 
follows: 

log(ed)= β0 +
∑p

j=1
sj
(
Xj
)
+ ϵ (1) 

where log(ed) is the logarithm of electricity demand; β0 is the intercept 
term; sj(.) represents a smooth function for the jth predictor variable Xj, 
which captures the impact of Xj on electricity demand; p is the number of 
predictor variables; ϵ is the error term assumed to be independently and 
identically distributed.

Weather variables influence electricity consumption due to heating 
and cooling needs (Auffhammer et al., 2017; Staffell and Pfenninger, 
2018). Specifically, below a certain threshold level, a fall in temperature 
increases the electricity demand for heating and again, beyond a specific 
temperature, an increase in temperature raises the electricity demand 
for cooling. Precipitation and snowfall affect heating demand, whereas 
windspeed influences demand (via wind chill) and supply (via renew
able generation efficiency). Thus, we have included temperature (temp), 
precipitation (precip), windspeed (wind), and snowfall (snow) as pre
dictor variables. Carbon price (carbon) is included as an economic policy 
variable to understand whether carbon prices affect electricity demand 
directly and whether it also moderates the effect of temperature on 
electricity demand. We also employ several factor variables to capture 
and control the impact of (a) COVID-19, (b) the Russia-Ukraine war and 
(c) seasonal variations that include spring, summer, and autumn 
(reference category).

COVID-19 and the Russia-Ukraine war dummy variables at the 
hourly level are introduced to capture the major global shocks affecting 
electricity demand through changes in economic activity, mobility, and 
energy market volatility, as discussed by Jiang et al. (2021) and Kumar 
and Mallick (2023). The COVID-19 and Russia-Ukraine war dummy 
variables are constructed as binary variable at the hourly level, where all 
hours prior to March 23, 2020 (the UK’s first national lockdown) are 
coded as 0 and all subsequent hours as 1 for the COVID-19 dummy; 
similarly, hours before February 24, 2022 are coded as 0 and all hours 
after as 1 for the war dummy.

These dummy variables are designed to capture the structural change 
in electricity demand potentially resulting from COVID-19 and Russia- 
Ukraine war, while we acknowledge that the impacts of these events 
are dynamic and phased over time rather than instantaneous shifts. 
However, to maintain model parsimony and reduce risks of overfitting 
and multicollinearity—particularly given the partial overlap between 
the COVID-19 and war periods and the complexity of the semi- 
parametric GAM framework—we opted for dummy variable approach. 
Further, to address potential oversimplification of the model, we con
ducted detailed robustness checks including subsample analyses 
comparing pre- and post-event periods, which consistently reinforce the 
validity of the binary dummy approach for capturing the principal 
regime shifts in electricity demand. We also include extensive temporal 
controls (seasonality, day/night, trends) to mitigate confounding 
influences.

In the baseline model, we excluded electricity prices from the anal
ysis due to concerns about endogeneity and methodological complexity. 
Electricity prices are often determined simultaneously with demand and 
are influenced by the same weather variables included in our model, 
creating potential circular causality. Additionally, incorporating elec
tricity prices as a smooth term in the GAM framework, which already 
models multiple non-linear interactions, would significantly increase 

model complexity and risk overfitting, thereby compromising inter
pretability. However, given that price is an important determinant of 
demand, we have included electricity price as the smooth term in the 
model and re-estimated all the models to control the indirect effect of 
carbon price on electricity demand through electricity prices.

The smooth functions sj(.) were modelled using a penalised spline 
regression. Penalisation is applied to control the wiggliness of the 
smooth terms, which prevents overfitting but allows sufficient flexibility 
to capture non-linear patterns (Wood, 2017). Smooth function sj(.) is 
uniquely estimated for each corresponding predictor variable. The de
gree of smoothness for each term was determined by minimising the 
restricted maximum likelihood (REML) criterion during model 
estimation.

We follow a step-by-step approach to comprehensively analyse each 
factor’s impact on electricity demand. Starting with a baseline model, 
each model progressively adds variables to gradually capture the com
plex nature of relationships between electricity and its predictors. It also 
allows us to isolate each factor’s incremental impact and assess the re
lationships’ dynamics. To do so, we employ six different models to 
progressively capture the increasingly complex nature of weather effects 
on electricity demand. Each of the model specifications is described 
below.

Model 1: the following baseline generalised additive model (GAM) 
includes smooth terms for temperature, precipitation, windspeed, snow, 
and carbon price: 

(1.1) 

Model 2: Model 1 is extended by adding an interactive smooth term 
between the carbon price and temperature as follows: 

(1.2) 
Model 3: We further extend Model 2 by incorporating a binary 

dummy for COVID-19: 

(1.3) 
Model 4: In Model 2, a categorical dummy for seasons is added to 

account for seasonal variations: 

(1.4) 

where seasonk represents spring, summer, and winter (autumn is used as 
the reference category).

Model 5: Model 2 is extended in Model 5 by including a dummy for 
the Russia-Ukraine war: 

(1.5) 
Model 6 is derived by adding the interaction of carbon prices, tem

perature and the war period variables to Model 2: 

(1.6) 
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Models 1–6 are estimated using the ′mgcv′ package in R (Wood, 
2017), which provides efficient algorithms for the GAM estimation 
method. The estimation process involves the penalised likelihood max
imisation (REML), which balances the model’s fit.

3.3. Patterns in electricity demand and weather effects

The empirical analyses of this paper are split into two subsections, 
with this section focusing on descriptive analyses and the following 
subsection examining empirical modelling. The descriptive statistics in 
Table 1 provide an overview of key variables such as electricity demand 
(ed), temperature, precipitation, windspeed, snow, and carbon prices. 
Electricity demand (ed) has a mean value of 65,406 MW and ranges from 
28,650 MW to 117,957 MW, indicating substantial variation in demand. 
Extreme weather, economic activity, and seasonal effects are possible 
sources of this variation.

For the temperature variable, the average is 12.05 ◦C, which is 
consistent with the mild climate of the UK. A wide range from − 7.2 ◦C to 
39.8 ◦C reflects periods of extreme cold and heat, both of which influ
ence electricity demand (for heating or cooling). The mean precipitation 
(0.07 mm) is a relatively low average, but the maximum of 36.44 mm 
shows occasional occurrence of intense precipitation events. The mean 
wind speed of 10.54 km/h reflects typical wind conditions in the UK. 
Windspeeds range from calm (0 km/h) to strong winds (59 km/h), 
influencing renewable energy generation (especially wind power) and 
potentially impacting electricity demand, with wind chill increasing 
heating needs. The mean carbon price is £24.21 per ton during our study 
period. Prices fluctuate significantly, from as low as £2.70 to £98.01, 
suggesting that market-based carbon pricing mechanisms and policy 
shifts strongly influence carbon price. The correlation heatmap visually 
depicts the relationships between the variables in our analyses, 
providing insights into how different factors influence electricity de
mand (see Fig. 1). In conclusion, that electricity demand in the UK is 
correlated with weather variables.

To grasp more in-depth insights into the relationships between 
electricity demand and its key determinants, we further analyse the 
behaviour of electricity demand, supply, and temperature in the UK (see 
Figure A.1 in the Appendix). We begin with the electricity demand. Its 
distribution appears to be slightly skewed to the right, with a long tail 
extending toward higher electricity demand values (Panel A in 
Figure A.1 in the Appendix). This demand pattern could be attributed to 
extreme weather conditions, seasonal variations, or economic activity.

Next, we add box plots of electricity demand across months in Panel 
B in Figure A.1, with horizontal lines inside each box representing the 
median electricity demand. The plots show a clear pattern of electricity 
use during winter months (December–March), mainly for heating usage. 
The demand starts falling in February and reaches its lowest in August 
before starting to pick up again. Our scatter plots of electricity demand 
against temperature (Panel C in Figure A.1 in the Appendix) reveal a U- 
shaped relationship between electricity demand and temperature: de
mand decreases at mild temperatures but increases both during extreme 
cold and hot weather. The temperature distribution exhibits normal 

distribution over the period (Panel D in Figure A.1 in the Appendix) with 
slight skewness to the right. Skewness with a longer tail extending to
wards higher temperatures suggests more extreme warm temperatures 
than extreme cold temperatures. The peak of the distribution lies around 
10 ◦C.

Fig. 2 describes the percentage contributions of various energy 
sources to the overall electricity generation mix from 2010 to 2023. 
Nuclear, hydro and gas have consistently been the dominant energy 
sources throughout the period, with a collective contribution of around 
50–60 percent of the total generation. Coal’s contribution has declined 
significantly over the years, dropping from around 40 percent in 2010 to 
less than 20 percent in 2023. The contribution of natural gas has 
increased gradually, potentially replacing some of the decline in coal 
generation. Renewable energy sources such as wind and solar have seen 
substantial growth, with wind rising from a small percentage in 2010 to 
around 10–15 percent by 2023, and solar also gaining a notable share in 
the later years. Other renewable sources, such as geothermal and 
biomass waste, have maintained a relatively small but consistent pres
ence in overall generation. Oil appears to have a diminishing role in 
electricity generation, contributing only a minimal percentage in recent 
years.

The widespread use of renewable energy has helped improve envi
ronmental quality in developed and developing countries (Sharma et al. 
(2021)). Thus, the electricity production data suggests a transition to
wards a more diversified and cleaner energy mix, with a reduction in the 
reliance on fossil fuels, namely coal and an increasing adoption of 
renewable energy sources such as wind and solar, potentially driven by 
factors such as environmental concerns, technological advancements, 
and policy initiatives.

3.4. Results and discussion

In this sub-section, we report and analyse the results from the 
generalised additive method. We employ six step-by-step models with 
different model specifications explained in Section 3.2 above, and the 
results are reported in Table 2. Each model progressively adds variables 
to gradually capture the complex nature of relationships between elec
tricity and its predictors. We start with a baseline model, including 
weather variables and the carbon price in Model 1. We then add inter
action terms - carbon prices and temperature in Model 2, COVID-19 in 
Model 3, seasons in Model 4, and the Russia-Ukraine war in Model 5, 
and end up with a complex interaction among carbon price, tempera
ture, and the war period in Model 6. Across all models, temperature, 
windspeed, and carbon prices consistently show strong non-linear ef
fects on electricity demand.5 Including COVID-19, seasonality, and the 
war provides a deeper understanding of how environmental and socio
economic factors interact to shape electricity consumption patterns.

We first explain Model 1, which examines the non-linear effects on 
electricity demand of precipitation, temperature, windspeed, snow, and 
carbon prices. All predictors have significant effects, with temperature 
and carbon price showing particularly strong non-linear relationships. 
The model explains 28.3 % of the variability in electricity demand, 
indicating that weather and carbon prices are important factors influ
encing electricity consumption. This model allows us to observe how 
these factors individually influence demand patterns, highlighting how 
extreme temperatures or high carbon prices might cause significant 
changes in energy usage.

Table 1 
Descriptive statistics.

Variables Mean Std. Dev. Minimum Maximum Skewness Kurtosis

ed 65,406.18 15,864.26 28,650 117,957 0.25 2.37
temp 12.05 6.03 − 7.2 39.80 0.17 2.85
precip 0.07 0.63 0 36.446 17.86 471.52
wind 10.54 8.47 0 59 0.58 3.01
snow 0.00 0.02 0 5.04 145.25 25,840.35
carbon 24.21 26.22 2.7 98.01 1.53 3.93

Note: N = 93,530. ed: national electricity; temp: temperature (in ◦C); precip: 
precipitation in millimeters (mm); wind: wind speed in km/hour; snow: snowfall 
(mm); carbon: carbon prices in US$.

5 We have also re-estimated Models 1–6 using data for ‘apparent temperature 
(AT)’ following Steadman (1994) instead of using standard temperature mea
sures (temp). The AT, also known as the heat index or ‘feels like’ temperature, 
captures the combined effects of windspeed, air temperature, and relative hu
midity, which account for the joint effects perceived by humans. The results for 
both AT and temp are qualitatively similar and thus are not reported here to 
conserve space.
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The intercept represents the expected value of electricity demand 
when all smoothed predictors are at their mean values. The estimated 
value of the intercept term is 11.06 in Model 1, which is statistically 
significant. Temperature has a significant non-linear effect on electricity 
demand with the high effective degrees of freedom for the smooth term 
(edf = 8.616). These results indicate that electricity demand increases 
during extremely high and low temperatures to meet cooling and 
heating needs. This pattern aligns with Harish et al. (2020), who also 
report non-linear temperature effects in Indian cities, though with more 
pronounced cooling-driven demand spikes. This non-linear relationship 
suggests that temperature plays a dual role in driving electricity de
mand. From a climate policy perspective, this finding underscores the 
importance of introducing energy efficiency measures during both hot 
and cool seasons. Extreme weather increases energy demand, while 

meeting such demand becomes unsustainable with an inefficient energy 
sector. Improving efficiency requires significant fixed costs,6 high
lighting a potential policy trade-off between efficiency gains and large 
fixed investment.

Similarly, carbon prices with edf = 18.872 suggest a significant 
negative, non-linear effect on electricity demand, indicating more pro
nounced effects as the carbon price increases. This negative relationship 
suggests that higher carbon prices incentivise energy conservation, 
particularly among industrial and commercial consumers who are more 
sensitive to carbon-related cost increases. Furthermore, the impact of 

Fig. 1. Correlation heatmap.

Fig. 2. Percentage share of different sources of electricity generation in the UK.

6 https://blogs.adb.org/blog/energy-efficiency-why-not-enough-being-inves 
ted.
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the carbon price on electricity demand presents a non-linear and higher- 
order polynomial pattern. This finding highlights the effectiveness of 
carbon prices as a market-based instrument in reducing electricity de
mand, particularly when the carbon price crosses its threshold. Our re
sults indicate that demand elasticities of electricity become more 
responsive with higher carbon prices and vice versa. They also suggest 
that a sharp rise in carbon prices could lead to disproportionate impacts 
on energy-intensive industries and vulnerable populations. Thus, poli
cymakers should consider complementary measures, such as subsidies 
for developing energy-efficient technologies or income support for low- 
income households, to mitigate the adverse consequences of (high) 
carbon taxes.

It is observed that the estimated degrees of freedom (edf) of precip
itation (precip) are relatively low (3.11) compared to temperature and 
carbon price; thus, the nonlinearity in the effect of precipitation on 
electricity demand is less complex. We find that windspeed with edf =
8.404 also has a non-linear impact of a higher-order polynomial on 
electricity demand. Such non-linear effects depend on windspeeds, 
which can reduce demand in warmer periods (i.e., cooling effects) while 
increasing demand to meet heating needs during colder months (i.e., 
heating effects). We further find that snowfall with edf = 1.914 has a 
significant but moderate non-linear impact on electricity demand. 
Snowfall is a key driver of electricity consumption in colder climates, 
with demand rising during winter and heavy snowfall episodes. Inte
grating weather forecasting with energy planning could ensure a more 
efficient energy supply during snowy seasons.

Next, Model 2 in Table 2 builds on Model 1 by adding an interaction 
between carbon prices and temperature, denoted by carbon*temp. The 
coefficient of this interaction term suggests that carbon prices during 
extreme temperatures have a stronger impact than otherwise on elec
tricity demand. The inclusion of carbon*temp improves the explanatory 
power from 28.3 % in Model 1 to 29.3 % in Model 2. The edf for carbon* 
temp is 25.555 and is highly significant, indicating that the impact of 
carbon prices on electricity demand is even more non-linear compared 
to Model 1, which does not include the interaction term (carbon*temp). 
Carbon prices have a stronger effect during extremely high and 
extremely low-temperature spells. The high impact of the interaction 
variable highlights that carbon pricing alone may not be effective in 
normal weather, while it becomes crucial during extreme temperature 
episodes. Thus, policymakers can miss opportunities to reduce 

electricity demand during extreme weather events when they rely solely 
on carbon pricing to manage demand. Hence, an innovative, flexible 
carbon pricing strategy, such as introducing higher (lower) pricing 
during extreme (mild) weather, will help mitigate the excessive eco
nomic burden.

In the next step, Model 3 includes the COVID-19 pandemic, denoted 
by covid, along with weather variables and carbon prices in order to 
capture its moderating impact on electricity demand. The coefficient for 
covid is − 0.115, which is statistically significant, indicating a lower 
electricity demand during the pandemic and the post-period compared 
to the pre-COVID period. The inclusion of covid dummy further improves 
the model’s fit to 30 %, confirming that the pandemic altered con
sumption patterns. All variables remain significant. This finding aligns 
with the ensuing economic downturn during COVID-19. A persistently 
high edf of carbon*temp suggests that the joint impact of carbon prices 
and temperature on electricity demand remains non-linear with a higher 
order polynomial. Furthermore, the results reflect that covid has also 
affected the combined effects of carbon prices and temperature, thus 
indicating that consumers’ responses to changes in carbon prices vary 
with temperatures and during COVID-19.

We further incorporate seasonal effects as the additional moderator 
in Model 4 in Table 2 to assess how demand changes across different 
seasons. Winter increases electricity demand, while spring and summer 
reduce it. The inclusion of seasonal effects with carbon*temp further 
improves the explanatory power of the model to 35 %, offering a more 
nuanced view of how weather and economic factors interact throughout 
the year. Our findings confirm the presence of significant seasonal ef
fects on electricity demand, with the highest impact in winter and the 
lowest in summer. Electricity demand, compared to the baseline esti
mate of 11.073, decreases by 0.017 and 0.154 in spring and summer, 
respectively, and increases by 0.117 in winter. A substantial drop in edf 
of the carbon price indicates that their effects on electricity demand are 
non-linear, with a distinct seasonal pattern. The impact of carbon*temp 
on electricity demand remains non-linear, with a pronounced impact 
when temperature and carbon prices reach their highest level. The 
smooth terms for all other variables are statistically significant and have 
a similar edf, suggesting that their relationships with electricity demand 
remain consistent with the baseline model.

We re-estimate the model by incorporating the Russia-Ukraine war 
as a moderator, denoted by war, in Model 5 in Table 2. The results show 

Table 2 
Generalised additive models (GAM) estimate of weather, carbon price, and external shocks on UK electricity demand.

Term Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Parametric coefficients
Intercept 11.06*** 11.06*** 11.09*** 11.07*** 11.07*** 11.06***
Factor variable
covid ​ − 0.115*** ​ ​ ​
seasons = spring ​ ​ ​ − 0.013*** ​ ​
seasons = summer ​ ​ ​ − 0.152*** ​
seasons = winter ​ ​ ​ 0.119*** ​
Russia-Ukraine war (war) ​ ​ ​ ​ − 0.11*** ​
Smooth terms
precipitation (precip) 3.111** 2.835** 2.780** 2.948*** 3.088** 3.209***
temperature (temp) 8.616*** 8.285*** 8.390*** 7.950*** 8.147*** 6.108*
windspeed (wind) 8.404*** 8.383*** 8.374*** 8.201*** 8.276*** 8.237***
snowfall (snow) 1.914* 1.848* 1.865** 2.062*** 1.928** 2.111**
carbon prices (carbon) 18.872*** 18.753*** 18.675*** 18.667*** 18.744*** 13.833**
carbon price*temperature (carbon*temp) 25.555*** 26.044*** 24.846*** 25.327***
carbon price*temperature*Russia-Ukraine war (carbon*temp*war) ​ ​ ​ ​ ​ 94.659***
Adjusted R-squared 0.283 0.293 0.299 0.358 0.295 0.304
Restricted maximum likelihood (REML) score 12,958 13,504 13,926 18,040 13,677 14,148
Scale estimates 0.044 0.044 0.043 0.040 0.044 0.043
Number of observations 93,530 93,530 93,530 93,530 93,530 93,530

Note: *** for p < 0.001, ** for p < 0.01, * for p < 0.05; for parametric coefficients of the factor variables, coefficient values and their significance level are reported. For 
the “smooth terms”, effective degrees of freedom (edf) and their significance level are reported. Scale estimates indicate residual variances, with a small value 
indicating a good model fit in terms of prediction accuracy. Models 1–6 represent equations (1)–(6), respectively, in section 3.2.
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electricity demand during the war decreased by 0.114 compared to its 
baseline estimate of 11.072, and the smooth terms for all variables 
remain significant. This reduction in electricity demand after the onset 
of the war may be attributed to higher global energy prices and supply 
chain disruptions, which constrained economic activity. This reduction 
reflects the adverse consequences of the war on energy consumption and 
the economy. Kumar and Mallick (2023) similarly note that geopolitical 
tensions increase input costs for electricity generation, suppressing de
mand. The result highlights the importance of energy security and 
resilient energy systems during phases of geopolitical instability. Thus, 
policy should focus on diversifying energy sources and decentralised 
power generation to mitigate such risks. Similar to Model 4, the impact 
of carbon prices remains significant but with reduced nonlinearity as the 
edf declines to 8.373, suggesting that part of the non-linear effects of 
carbon prices is captured in the war variable. The impact of carbon*temp 
on electricity demand remains non-linear with a higher order poly
nomial (edf = 25.451). These results suggest that carbon 
price-temperature interactions have a persistent non-linear effect on 
electricity demand.

In our final model (Model 6 in Table 2), we include non-linear terms 
for precipitation, temperature, windspeed, snow, and carbon prices, as 
well as a three-way interaction of carbon prices, temperature, and the 
war period, denoted by carbon*temp *war. The coefficient for the 
interaction term is significant, highlighting how carbon pricing, jointly 
with extreme temperatures and the war, can significantly affect elec
tricity demand in non-linear ways, with a higher-order polynomial. The 
effects of precipitation, temperature, windspeed, and snowfall remain 
significant and persistently similar to those of the baseline model. 
Finally, Model 6 reveals that while individual weather variables (pre
cipitation, temperature, windspeed, and snow) influence electricity de
mand, the interactive carbon*temp*war term provides a more complex 
and nuanced understanding of electricity demand dynamics.

Having discussed the static non-linear relationships estimated in 
Models 1–6 (Table 2), we now focus on the dynamic non-linear effects 
on electricity demand of predictors: seasons, the pandemic, the Russia- 
Ukraine war, and interactions between variables. Figs. 3 and 4 capture 
these dynamic effects, where Fig. 3 corresponds to Model 1 and Fig. 4
corresponds to Models 2–5. We find a non-linear impact of all predictors 

Fig. 3. Baseline Model (Model 1): Weather Effects on Electricity Demand. Note: The solid line in each figure shows the estimated effect of each predictor, while the 
dashed lines represent the confidence intervals.
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Fig. 4. Effects of carbon prices and carbon*temp on electricity demand Models 2–5. Note: The solid line in each figure shows the estimated effect of each predictor, 
while the dashed lines representing the confidence intervals.
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across model specifications, although such effects vary across variables 
and models. Results show that the strongest non-linear effects prevail for 
temperature, carbon price, and snowfall, while a low or mild non-linear 
impact exists for other variables. We further find that the interaction 
terms also exert non-linear effects on electricity demand. Importantly, 
the inclusions of interaction terms in the model reduce the strength of 
the non-linear effects of individual variables.

To gain further insights into the complex polynomial nature of re
lationships, we choose Fig. 3 as an example to thoroughly analyse the 
relationship between electricity demand with its predictors. Fig. 3 re
veals a U-shaped relationship between temperature and electricity de
mand, consistent with our findings in sub-section 3.3, with electricity 
demand increasing during extremely high and low temperatures to meet 
cooling and heating needs, respectively. This non-linear relationship 
demonstrates that temperature plays a dual role in driving electricity 
demand. We further find that electricity demand initially drops when 
windspeed is around 35 km/h and starts rising when windspeed reaches 
around 42 km/h, and falls again when windspeed is at around 50 km/h.

Concerning snowfall, we observe that electricity demand increases 
with snowfall, and then starts falling gradually when snowfall reaches 20 
mm. From a climate policy perspective, this result underscores the 
importance of considering energy efficiency measures during both heating 
and cooling seasons. If energy efficiency improvements (such as better 
insulation or more efficient HVAC systems) are not implemented, the ris
ing frequency of extreme temperatures due to climate change could lead to 
unsustainable increases in electricity demand. However, such investments 
would require significant upfront costs, which could be a barrier for lower- 
income households, highlighting a potential policy trade-off.

For carbon prices, we observe that electricity demand decreases with 
an increase in carbon prices, with the impact being more pronounced 
when carbon prices reach their highest level. Furthermore, the effect of 
carbon prices on electricity demand reveals a varying consumer 
response pattern across carbon price ranges. The results highlight the 
effectiveness of market-based instruments, such as carbon pricing, in 
reducing electricity demand, particularly when prices reach higher 
levels. From an economic standpoint, our findings support the view that 
elasticities of electricity demand become more responsive at higher 
carbon price levels. If carbon prices remain low, they may not induce 
significant changes in consumer behaviour.

The movements of the carbon price variable across Models 2–5 
reveal that carbon prices at higher levels become less effective in 
curbing electricity demand (see Fig. 4). This ineffectiveness is possibly 
due to the limited alternative electricity supply during periods of peak 
electricity demand. The interaction effect of carbon prices and temper
ature indicates that their combined effects on electricity demand are 
more pronounced when both carbon prices and temperature are at their 
highest or lowest levels. The magnitudes of such effects are influenced 
by seasons, COVID-19 and the Russia-Ukraine war. Thus, the findings of 
our analysis suggest the need for a flexible and adaptive carbon pricing 
strategy that accounts for factors influencing the carbon price-electricity 
demand sensitivity. Pursuing this strategy will promote stabilising the 
demand for electricity under extreme weather conditions and simulta
neously aid in achieving environmental goals.

We introduced electricity price (log dap) as a smooth term in all six 
models to isolate its effect and avoid confounding it with the carbon 
price. Without explicitly including electricity price, the carbon price 
term might have inadvertently captured both the policy effect and 
market-based price fluctuations. Additionally, the precipitation variable 
is respecified as precip1 by subtracting snowfall from total precipitation 
to better reflect actual precipitation effects without overlapping with 
snow-specific effects.7

The revised estimated model results are presented in Table 4A. The 
estimated effective degrees of freedom (edf) for the smooth term s 
(log dap) remain high and statistically significant across all models, 
indicating a strong non-linear relationship between price and electricity 
demand. Importantly, the effective degrees of freedom (edf) for the 
smooth term (carbon) remain consistently high and significant, sug
gesting that even after including both carbon prices and electricity pri
ces in the model, the carbon price continues to exhibit a strong and 
significant effect on electricity demand. This persistent effect suggests 
that carbon pricing influences demand via direct channels in addition to 
the price channel. Our findings, therefore, highlight that carbon pricing 
serves not only as a price-based instrument but also as a broader policy 
instrument for managing demand.

In contrast, s(precip1) is statistically insignificant with edf~1.00 in 
all the models except Model 4, suggesting a near linear and limited in
fluence of precipitation on demand. Snow appears to have a significant 
effect only in Models 1, 4, and 6. Meanwhile, windspeed is consistently 
significant across all models and exhibits strong non-linear relationships 
with electricity demand. The smooth term of temperature remains sig
nificant and strong in all models, thus suggesting a non-linear influence 
on electricity demand.

Overall, the results are robust and broadly consistent with those from 
the baseline results. The inclusion of electricity price strengthens the 
findings by removing potential endogeneity between price and policy 
variables. Except for the reduced significance of the precipitation vari
able, the main conclusions remain unchanged, confirming the non- 
linear impact of temperature, wind, and carbon price on electricity 
demand.

3.4.1. Subsample analysis
In this section, we assess whether the impact of weather and carbon 

price on electricity demand is affected by COVID-19 and the Russia- 
Ukraine war. Thus, we split our sample between pre- and post-COVID- 
19 and the pre- and post-Russia-Ukraine war and re-execute the GAM 
model. Here, it is essential to note that given the data limitation, we have 
analysed only the selected models (Models 1, 2, 3, 4 and 5) out of Models 
1 to 6.8 Results from the sub-sample analyses are reported in Tables 2A
and 2B and Figures A.2 and A.3 in the Appendix.

Our findings from sub-sample periods indicate a marginal reduction 
in UK electricity demand during the post-COVID-19, as indicated by a 
drop in the intercept from 11.11 during the pre-COVID to 10.89–10.94 
during the post-COVID. Temperature remained a significant factor. 
However, its non-linearity declined during the post-COVID period 
(Table 2A and Figure A.2). The impact of carbon prices diminished while 
the joint non-linear effect of carbon price and temperature persisted but 
differed between the pre- and post-sub-sample period, as indicated by a 
slight decline in demand during the post-war period (Table 2A and 
Figure A.2 in the Appendix). The non-linear effects of temperature and 
carbon prices diminished at higher values (Table 2B and Figure A.3). 
However, the combined effect of temperature and carbon price remains 
highly non-linear with differing effects for the pre- and post-subsample 
periods (Table 2B and Figure A.3). These findings from sub-sample an
alyses highlight how systemic shocks such as COVID-19 and the Russia- 
Ukraine war have influenced the UK electricity demand trajectory.

Consistent with the full sample analysis, we included the electricity 
price (log dap) as the smooth term across all the sub-sample models to 
separate the effect of electricity price from that of the carbon price. We 
also replaced the precipitation variable with precip1 (precipitation 
minus snow) to isolate its influence. Tables 4B and 4C show results 
aligned with the earlier findings. The COVID-19 and Russia-Ukraine war 

7 We are grateful to one of the reviewers for pointing out the potential issue 
of double counting and overlap in the definition of precipitation, which we 
have now addressed.

8 For the pre-Covid sub-sample we have analysed model 1, 2 and 4 whereas 
for the post-Covid sub-sample we have estimated model 1, 2, 4 and 5. Similarly, 
for the pre-war we have estimated model 1, 2, 3 and 4 and for the post-war sub- 
sample we have analysed model 1, 2 and 4.
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sub-sample models confirm the robust non-linear effect of carbon price, 
temperature, and windspeed on electricity demand. Electricity price 
shows a consistently strong non-linear effect across all sub-samples. 
Notably, the impact of temperature appears to weaken in the post-war 
periods, potentially reflecting changing consumer behaviour or shift
ing the industrial response. The precip1 variable has remained statisti
cally insignificant across the sub-samples, while wind continues to have 
a consistent non-linear impact on demand.

3.4.2. Quantile on quantile analysis results
To assess the robustness of our GAM model results, we performed 

quantile-on-quantile regression analyses, and results are reported in 
Tables 3A and 3B and Figure A.4 in the Appendix. For brevity, we have only 
presented the results for the electricity demand-temperature and electricity 
demand-carbon price pairs. Results suggest that the impact of temperature 
on electricity demand increases with demand and becomes more pro
nounced when temperature is in the bottom 0.1–0.3 quantiles. These results 
confirm our earlier findings on the presence of non-linear relationships 
between temperature and electricity demand. The impact of carbon prices 
on electricity demand presents a nuanced picture – at the lower level of 
demand, the effects of carbon prices are negative and on an increasing trend, 
but this negative impact lessens at the 0.7–0.9 quantile. Such diminishing 
effects at the upper quantiles of demand reflect the limitations of using 
carbon pricing as an instrument when demand is already at its upper 
quantiles.

4. Conclusions

This paper examines the nuanced relationship between electricity 
demand and temperature in the UK, framed within the broader context 
of carbon pricing, climate change and geopolitical events such as the 
COVID-19 pandemic and the Russia-Ukraine war. In particular, the 
study tests the possibility of non-linear or U-shaped influences of tem
perature on electricity demand and how carbon prices as policy in
struments moderate the effect of temperature on electricity demand. 
Furthermore, the study analyses the influence of recent events such as 
COVID-19 and the Russia-Ukraine war on the UK’s electricity demand.

Our findings—drawn from both descriptive and generalised additive 
models (GAMs)—confirm a non-linear (U-shaped) relationship between 
temperature and electricity demand. Demand decreases at moderate 
temperatures and increases during extreme temperatures, particularly 
due to heightened heating needs in colder months. This U-shaped de
mand pattern is attributed to the UK’s climate and built environment, 
which are more oriented towards heating requirements. Electricity de
mand also exhibits seasonal variation, with electricity peaking during 
winter due to increased economic activity and heating requirements.

Furthermore, our results show that carbon pricing plays a crucial role 
in reducing electricity demand, particularly during periods of extreme 
temperature. The interaction between carbon pricing and temperature 
reveals that policymakers must consider adaptive pricing mechanisms to 
avoid inequitable access to energy services during extreme weather. We 
also introduced electricity prices as a smooth term to distinguish policy- 
driven effects from market responses. The results suggest that even after 
controlling for electricity prices, carbon pricing continues to exhibit a 
strong, non-linear influence on electricity demand. This indicates the 
robustness of carbon price effects and the potential of adaptive carbon 
pricing schemes to regulate demand without distorting market signals. 
The analysis also reveals the significant impacts of the COVID-19 
pandemic and the ongoing Russia-Ukraine war on electricity demand 
patterns, reflecting broader economic and social disruptions. We also 
find the influence of weather-related variables such as snow and pre
cipitation on increasing demand to meet heating requirements. 
Furthermore, substituting precipitation with a refined measure (precip1, 
excluding snow) did not change the overall results.

We find a varying electricity demand across months, with colder 
months showing augmented electricity demand due to increased heating 
requirements and a rise in economic activity around the Christmas 
period. A gradual downward trend in demand over the years is primarily 
due to gains or improvements in energy efficiency from a wide range of 
government energy-saving schemes (ONS (2023); Safarzadeh et al. 
(2020); Bertoldi and Mosconi (2020)). We further find that the UK is 
reducing its reliance on fossil fuels by introducing a more diversified and 
cleaner renewable energy mix.

Sub-sample analysis (pre- and post-COVID, pre- and post-Russia- 
Ukraine war) confirms the robustness of our results. While the effects 
of electricity and carbon prices remain strong and non-linear, we 
observed a decline in temperature sensitivity in the post-war period, 
possibly due to changes in consumer behaviour, industrial adjustments, 
or broader energy efficiency gains.

The results of the GAM model provide crucial insights for designing 
climate adaptation policies. The non-linear interactions between tem
perature, carbon pricing, and electricity demand highlight the need for 
adaptive pricing schemes that respond to extreme weather conditions. 
Additionally, the counter-intuitive findings—such as the amplified ef
fect of carbon pricing during periods of extreme temperatures and the 
reduction in demand during wartime and pandemics—emphasise the 
importance of designing resilient energy systems. Based on our findings, 
we recommend implementing adaptive carbon pricing schemes that 
adjust rates during temperature extremes to control electricity demand 
more effectively. Improving the efficiency of heating and cooling sys
tems should be a priority to reduce large swings in electricity demand 
during extreme weather. To mitigate the geopolitical risks posed by the 
COVID-19 pandemic and the Russia-Ukraine war, energy policy should 
prioritise supply diversification, decentralised energy systems, and tar
geted support for vulnerable households facing price volatility.

In conclusion, this comprehensive analysis contributes to our un
derstanding of the electricity demand-temperature nexus in the UK. It 
highlights the broader implications of climate change and geopolitical 
events on energy systems. Future research on the temper
ature–electricity demand relationship using disaggregated data will be 
beneficial for improving the management of electricity supply from 
different sources and its demand for various uses, given the recurring 
extreme weather shocks in recent times.
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Appendix 

Table A1 
Variable Descriptions and Data Sources

Variable names Variable description Data sources

temp Mean temperature Visual Crossing Weather (2009–2023); https://www.visualcrossing.com/
humidity Relative humidity
precip Precipitation
precip1 Precipitation- Snowfall
wind Windspeed
snow Snowfall
ed Electricity demand Ofgem: https://data.nationalgrideso.com/data-groups/demand
log_dap Dap price Nordpool
carbon UK carbon price https://uk.investing.com/commodities/carbon-emissions-historical-data
year Dummy for years ​
month Dummy for months ​
weekend Dummy variable (weekend = 1 and weekdays = = 0) ​
covid Dummy to capture Pre and Post COVID-19 lockdown of March 23, 2020 ​
war Dummy to capture start of Russia-Ukraine war on February 24, 2022 ​

Note: Sample period of the study is January 02, 2009-December 21, 2023.

Fig. A.1. Electricity Demand and Temperature Characteristics
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Fig. A.2. Effects of carbon prices and carbon*temp on electricity demand pre- and post-Covid
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Fig. A.3. Effects of carbon prices and carbon*temp on electricity demand pre and post Russia-Ukraine War
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Table 2A 
Generalised additive models (GAM) estimate of weather, carbon price, and external shocks on UK electricity demand (Covid sub-sample)

Term Pre COVID Post COVID

Model 1 Model 2 Model 4 Model 1 Model 2 Model 4 Model 5

Parametric coefficients
Intercept 11.11*** 11.11*** 11.12*** 10.89*** 10.89*** 10.91*** 10.94***
Factor variable
seasons = spring ​ − 0.006** ​ ​ 0.002 ​
seasons = summer ​ ​ − 0.158*** ​ ​ − 0.134*** ​
seasons = winter ​ ​ 0.116*** ​ ​ 0.116*** ​
Russia-Ukraine war (war) ​ ​ ​ ​ ​ ​ − 0.086***
Smooth terms
Precipitation (precip) 2.843** 2.883** 2.639*** 1.959 1.905 2.573 2.172
Temperature (temp) 8.473*** 7.111*** 6.532*** 7.819*** 6.743*** 5.776 6.236**
windspeed (wind) 8.043*** 8.023*** 7.875*** 8.564*** 8.525*** 8.313*** 8.274***
snowfall (snow) 1.900* 2.157** 1.996** 1.001 1.000 1.006* 1.001
carbon prices (carbon) 18.609*** 18.609*** 18.630*** 18.292*** 18.308*** 18.378*** 18.365***
carbon price*temperature (carbon*temp) ​ 23.404*** 22.441*** 23.223*** 21.673*** 23.007***
Adjusted R-squared 0.186 0.194 0.27 0.216 0.247 0.297 0.251
Restricted maximum likelihood (REML) score 9448.2 9733 13,232 4885.1 5299.6 6108.3 5361
Scale estimates 0.045 0.044 0.040 0.038 0.037 0.034 0.036
Number of observations 70,297 70,297 70,297 23,233 23,233 23,233 23,233

Note: *** for p < 0.001, ** for p < 0.01, * for p < 0.05; for parametric coefficients of the factor variables, coefficient values and their level of significance are reported. 
For the “smooth terms”, effective degrees of freedom (edf) and their level of significance are reported.

Table 2B 
Generalised additive models (GAM) estimate of weather, carbon price, and external shocks on UK electricity demand (Russia-Ukraine war sub-sample)

Term Pre-War Post-War

Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 4

Parametric coefficients
Intercept 11.084*** 11.08*** 11.101*** 11.09*** 10.86*** 10.86*** 10.87***
Factor variable
covid ​ ​ − 0.117*** ​ ​ ​ ​
seasons = spring ​ ​ ​ − 0.019*** ​ ​ 0.025***
seasons = summer ​ ​ ​ − 0.157*** ​ ​ − 0.111***
seasons = winter ​ ​ ​ 0.112*** ​ ​ 0.128***
Smooth terms
Precipitation (precip) 2.955** 2.864** 2.815** 2.574*** 1.004* 1.003* 3.438*
Temperature (temp) 8.654*** 8.346*** 8.366*** 7.590*** 7.789*** 4.302 5.646
windspeed (wind) 8.159*** 8.189*** 8.172*** 8.025*** 7.847*** 7.618*** 7.494***
snowfall (snow) 1.965* 1.897* 1.906* 1.868* 1.422 1.000 1.000*
carbon prices (carbon) 18.850*** 18.676*** 18.572*** 18.579*** 13.417*** 15.795*** 13.853***
carbon price*temperature (carbon*temp) ​ 23.872*** 24.329*** 24.120*** ​ 22.418*** 20.286***
Adjusted R-squared 0.235 0.243 0.251 0.311 0.198 0.223 0.275
Restricted maximum likelihood (REML) score 10,992 11,392 11,817 15,263 2601.9 2739 3130.3
Scale estimates 0.045 0.044 0.044 0.040 0.036 0.035 0.033
Number of Observations 82,249 82,249 82,249 82,249 11,281 11,281 11,281

Note: *** for p < 0.001, ** for p < 0.01, * for p < 0.05; for parametric coefficients of the factor variables, coefficient values and their significance level are reported. For 
the “smooth terms”, effective degrees of freedom (edf) and their significance level are reported.

Table 3A 
Quantile-on-quantile regression results for electricity demand and temperature

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 − 6.570 (0.000) − 7.195 (0.000) − 7.642 (0.000) − 8.124 (0.000) − 8.701 (0.000) − 9.136 (0.000) − 9.679 (0.000) − 10.203 (0.000) − 10.238 (0.000)
0.2 − 6.487 (0.000) − 7.353 (0.000) − 8.073 (0.000) − 8.784 (0.000) − 9.613 (0.000) − 10.509 (0.000) − 11.523 (0.000) − 12.551 (0.000) − 12.697 (0.000)
0.3 − 6.597 (0.000) − 7.901 (0.000) − 8.949 (0.000) − 9.945 (0.000) − 11.276 (0.000) − 12.882 (0.000) − 14.514 (0.000) − 16.083 (0.000) − 17.156 (0.000)
0.4 − 7.937 (0.000) − 8.737 (0.000) − 9.111 (0.000) − 9.327 (0.000) − 9.645 (0.000) − 10.500 (0.000) − 12.178 (0.000) − 14.408 (0.000) − 16.367 (0.000)
0.5 − 8.015 (0.000) − 8.161 (0.000) − 7.954 (0.000) − 7.846 (0.000) − 7.765 (0.000) − 7.366 (0.000) − 6.787 (0.000) − 6.008 (0.000) − 4.338 (0.000)
0.6 − 8.030 (0.000) − 8.290 (0.000) − 8.058 (0.000) − 7.906 (0.000) − 7.725 (0.000) − 7.347 (0.000) − 6.612 (0.000) − 5.682 (0.000) − 3.486 (0.000)
0.7 − 9.144 (0.000) − 8.485 (0.000) − 7.573 (0.000) − 6.696 (0.000) − 5.723 (0.000) − 4.148 (0.000) − 1.709 (0.000) 0.881 (0.000) 3.502 (0.000)
0.8 − 7.922 (0.000) − 6.562 (0.000) − 5.334 (0.000) − 4.574 (0.000) − 3.698 (0.000) − 2.345 (0.000) − 0.535 (0.000) 1.344 (0.000) 3.393 (0.000)
0.9 − 7.271 (0.000) − 6.477 (0.000) − 5.702 (0.000) − 5.323 (0.000) − 4.661 (0.000) − 3.574 (0.000) − 1.906 (0.000) 0.000 (1.000) 1.883 (0.000)

Note: Parentheses reports the p-value.
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Table 3B 
Quantile-on-quantile regression results for electricity demand and carbon prices

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 − 0.817 (0.000) − 1.299 (0.000) − 1.984 (0.000) − 9.275 (0.000) − 16.097 (0.000) − 22.415 (0.000) − 34.552 (0.000) − 70.674 (0.000) − 98.347 (0.000)
0.2 − 0.750 (0.000) − 1.027 (0.000) − 1.752 (0.000) − 6.888 (0.000) − 14.887 (0.000) − 21.408 (0.000) − 32.088 (0.000) − 65.005 (0.000) − 100.331 (0.000)
0.3 − 0.746 (0.000) − 0.956 (0.000) − 1.656 (0.000) − 5.203 (0.000) − 14.604 (0.000) − 20.528 (0.000) − 30.907 (0.000) − 58.605 (0.000) − 102.310 (0.000)
0.4 − 0.919 (0.000) − 1.480 (0.000) − 2.236 (0.000) − 9.737 (0.000) − 17.681 (0.000) − 21.577 (0.000) − 35.716 (0.000) − 62.577 (0.000) − 84.984 (0.000)
0.5 − 1.038 (0.000) − 2.382 (0.000) − 5.056 (0.000) − 14.079 (0.000) − 20.018 (0.000) − 23.323 (0.000) − 49.332 (0.000) − 71.535 (0.000) − 81.185 (0.000)
0.6 − 1.076 (0.000) − 2.513 (0.000) − 7.605 (0.000) − 15.047 (0.000) − 20.781 (0.000) − 25.217 (0.000) − 54.717 (0.000) − 74.272 (0.000) − 83.060 (0.000)
0.7 − 1.347 (0.000) − 3.339 (0.000) − 8.941 (0.000) − 17.722 (0.000) − 22.366 (0.000) − 27.121 (0.000) − 57.298 (0.000) − 73.730 (0.000) − 30.629 (0.000)
0.8 − 1.259 (0.000) − 3.309 (0.000) − 8.884 (0.000) − 18.702 (0.000) − 24.283 (0.000) − 30.197 (0.000) − 64.107 (0.000) − 85.139 (0.000) − 31.970 (0.000)
0.9 − 1.176 (0.000) − 3.016 (0.000) − 6.119 (0.000) − 16.616 (0.000) − 22.644 (0.000) − 28.442 (0.000) − 58.609 (0.000) − 82.666 (0.000) − 51.010 (0.000)

Note: Parentheses reports the p-value.

Fig. A.4. Quantile-on-quantile regression results for electricity demand, temperature and carbon prices

C. Kaur et al.                                                                                                                                                                                                                                    Journal of Environmental Management 394 (2025) 126937 

16 



Table 4A 
Generalised additive models (GAM) estimate of weather, carbon price, and external shocks on UK electricity demand (after controlling for Electricity Price)

Term Model1 Model2 Model3 Model4 Model5 Model6

Parametric coefficients
Intercept 11.048*** 11.048*** 11.037*** 11.043*** 11.057*** 11.048***
Factor variable
covid ​ ​ 0.042*** ​ ​ ​
seasons = spring ​ ​ ​ 0.016*** ​ ​
seasons = summer ​ ​ ​ − 0.1*** ​ ​
seasons = winter ​ ​ ​ 0.113*** ​ ​
Russia-Ukraine war (war) ​ ​ ​ ​ − 0.07*** ​
Smooth terms
electricity price (log_dap) 8.951*** 8.948*** 8.948*** 8.939*** 8.948*** 8.946***
precipitation1 (precip1) 1.002 1.001 1.002 1.002* 1.004 1.002
temperature (temp) 8.337*** 8.481*** 8.472*** 6.904*** 8.366*** 4.245
windspeed (wind) 8.473*** 8.478*** 8.48*** 8.334*** 8.399*** 8.35***
snowfall (snow) 1.754* 1.556 1.651 3.417* 2.018 4.759**
carbon prices (carbon) 18.921*** 18.836*** 18.848*** 18.835*** 18.836*** 16.905***
carbon price*temperature (carbon*temp) ​ 26.302*** 26.293*** 25.669*** 26.242*** ​
carbon price*temperature*Russia-Ukraine war (carbon*temp*war) ​ ​ ​ ​ ​ 96.358***
Adjusted R-squared 0.556 0.562 0.563 0.602 0.563 0.572
REML score − 33510.333 − 34033.673 − 34117.082 − 38149.828 − 34138.481 − 34870.602
Scale estimate 0.027 0.027 0.027 0.024 0.027 0.026
Observations 86,797 86,797 86,797 86,797 86,797 86,797

Note: *** for p < 0.001, ** for p < 0.01, * for p < 0.05; for parametric coefficients of the factor variables, coefficient values and their level of significance is reported. 
For the “smooth terms”, effective degrees of freedom (edf) and their level of significance are reported.

Table 4B 
Generalised additive models (GAM) estimate of weather, carbon price, and external shocks on UK electricity demand (after controlling for Electricity Price) for Covid 
sub-sample

Term Pre-COVID Post-COVID

Model1 Model2 Model4 Model1 Model2 Model4 Model5

Parametric coefficients
(Intercept) 11.102*** 11.102*** 11.095*** 10.899*** 10.899*** 10.92*** 10.936***
Factor variable
seasons = spring ​ ​ 0.018*** ​ ​ − 0.024*** ​
seasons = summer ​ ​ − 0.099*** ​ ​ − 0.128*** ​
seasons = winter ​ ​ 0.109*** ​ ​ 0.100*** ​
Russia-Ukraine war (war) ​ ​ ​ ​ ​ ​ − 0.076***
Smooth terms
s(log_dap) 8.817*** 8.808*** 8.791*** 8.808*** 8.836*** 8.805*** 8.836***
s(precip1) 1.004 1.005 1.005 1.001 1.002 1.003 1.002
s(temp) 8.129*** 8.738*** 8.522*** 7.447*** 7.744*** 7.518*** 7.244***
s(wind) 7.977*** 7.91*** 7.752*** 8.451*** 8.376*** 8.056*** 8.073***
s(snow) 1.382 4.065* 1.709 1.001* 1.001 1.611* 1.002*
s(carbon) 18.909*** 18.907*** 18.925*** 17.31*** 17.903*** 17.349*** 17.957***
s(carbon, temp) ​ 25.853*** 25.302*** ​ 24.442*** 23.316*** 24.076***
Adjusted R-squared 0.525 0.534 0.577 0.453 0.478 0.521 0.481
REML score − 25867.26 − 26391.146 − 29482.2 − 9138.397 − 9606.914 − 10596.547 − 9677.002
Scale estimate 0.026 0.025 0.023 0.026 0.025 0.023 0.025
Observations 63,646 63,646 63,646 23,151 23,151 23,151 23,151

Note: *** for p < 0.001, ** for p < 0.01, * for p < 0.05; for parametric coefficients of the factor variables, coefficient values and their level of significance is reported. 
For the “smooth terms”, effective degrees of freedom (edf) and their level of significance are reported.

Table 4C 
Generalised additive models (GAM) estimate of weather, carbon price, and external shocks on UK electricity demand (after controlling for Electricity Price) for Russia- 
Ukraine war sub-sample

Term Pre-War Post-War

Model1 Model2 Model3 Model4 Model1 Model2 Model4

Parametric coefficients
(Intercept) 11.074*** 11.074*** 11.067*** 11.062*** 10.87*** 10.87*** 10.912***
Factor variable
covid ​ ​ 0.045*** ​ ​ ​ ​
seasons = spring ​ ​ ​ 0.025*** ​ ​ − 0.033***
seasons = summer ​ ​ ​ − 0.086*** ​ ​ − 0.17***
seasons = winter ​ ​ ​ 0.112*** ​ ​ 0.09***
Smooth terms
s(log_dap) 8.946*** 8.95*** 8.949*** 8.941*** 8.604*** 8.571*** 8.491***
s(precip1) 1.001 1.004 1.004 1.002 1.002 1.001 1

(continued on next page)

C. Kaur et al.                                                                                                                                                                                                                                    Journal of Environmental Management 394 (2025) 126937 

17 



Table 4C (continued )

Term Pre-War Post-War

Model1 Model2 Model3 Model4 Model1 Model2 Model4

s(temp) 8.383*** 6.871** 6.995** 7.121*** 6.991*** 4.572 5.469
s(wind) 8.229*** 8.244*** 8.249*** 8.098*** 7.306*** 6.837*** 7.054***
s(snow) 4.334* 4.337* 4.339* 3.669 1.005 1 1.001*
s(carbon) 18.908*** 18.768*** 18.785*** 18.753*** 16.504*** 16.792*** 15.928***
s(carbon, temp) ​ 23.874*** 23.864*** 24.705*** ​ 23.537*** 22.179***
Adjusted R-squared 0.552 0.558 0.559 0.594 0.374 0.401 0.469
REML score − 30724.616 − 31173.72 − 31268.948 − 34346.717 − 4006.93 − 4208.42 − 4878.74
Scale estimate 0.026 0.026 0.025 0.023 0.028 0.027 0.024
Observations 75,561 75,561 75,561 75,561 11,236 11,236 11,236

Note: *** for p < 0.001, ** for p < 0.01, * for p < 0.05; for parametric coefficients of the factor variables, coefficient values and their level of significance is reported. 
For the “smooth terms”, effective degrees of freedom (edf) and their level of significance are reported.

Data availability

Data will be made available on request.
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